0%

Codeforces Round 412(Div. 2) - C. Success Rate

PROBLEMSET里面神tm搜不到这题,很迷。所以标题就只好注明比赛出处而没法标明题号了。

Description

You are an experienced Codeforces user. Today you found out that during your activity on Codeforces you have made y submissions, out of which x have been successful. Thus, your current success rate on Codeforces is equal to x / y.

Your favorite rational number in the [0;1] range is p / q. Now you wonder: what is the smallest number of submissions you have to make if you want your success rate to be p / q?

Input

The first line contains a single integer t (1 ≤ t ≤ 1000) — the number of test cases.

Each of the next t lines contains four integers x, y, p and q (0 ≤ x ≤ y ≤ 109; 0 ≤ p ≤ q ≤ 109; y > 0; q > 0).

It is guaranteed that p / q is an irreducible fraction.

Hacks. For hacks, an additional constraint of t ≤ 5 must be met.

Output

For each test case, output a single integer equal to the smallest number of submissions you have to make if you want your success rate to be equal to your favorite rational number, or -1 if this is impossible to achieve.

Example

1
2
3
4
5
6
7
8
9
10
11
input
4
3 10 1 2
7 14 3 8
20 70 2 7
5 6 1 1
output
4
10
0
-1

Note

In the first example, you have to make 4 successful submissions. Your success rate will be equal to 7 / 14, or 1 / 2.

In the second example, you have to make 2 successful and 8 unsuccessful submissions. Your success rate will be equal to 9 / 24, or 3 / 8.

In the third example, there is no need to make any new submissions. Your success rate is already equal to 20 / 70, or 2 / 7.

In the fourth example, the only unsuccessful submission breaks your hopes of having the success rate equal to 1.

Key

给你参加的总场次\(y\)与其中胜利的场次\(x\),现要求胜率达到\(p/q\),问还要再比多少场(每一场可胜可负)。 想明白了其实是个巨简单的题目。为了达到目标,比赛的总场次必为\(q\)的倍数(现设倍数为\(k\)),则\(k*q>=y\);在比了\(k*q\)场次的情况下,必须胜利\(k*p\)次,则\(k*p>=x\)。胜利的场数肯定不大于总场数,则只要找到\(k*p-x<=k*q-y\)的最小k即获得了答案。 综合一下三个条件,找出满足以下条件的k的最小值:

1
2
3
k>=y/q;
k>=x/p;
k>=(y-x)/(q-p);
\(k=max(y/q, x/p, (y-x)/(q-p))\)。其中除法结果若为小数则向上取整。 因此\(O(1)\)时间复杂度即可求出。 至于无法达到的情况,只有\(x/y\)不为0而\(p/q\)为0、或\(x/y\)不为1而\(p/q\)为1两种。一开始判断掉就行。

Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
#include<iostream>
using namespace std;
typedef long long LL;
LL T, x, y, p, q;

int main()
{
cin >> T;
while (T--) {
cin >> x >> y >> p >> q;
if (x*q == p*y) {
cout << "0\n";
continue;
}
if (p == 0 || p == q) {
cout << "-1\n";
continue;
}
LL k = (y - x - 1) / (q - p) +1;
if (k*p < x) k = (x - 1) / p + 1;
if (k*q < y) k = (y - 1) / q + 1;
LL res = k*q - y;
cout << res << '\n';
}
return 0;
}